红外光学材料是指应用在与制导技术和红外成像中,制造滤光片、透镜、棱镜、窗口片、整流罩等的一类材料。这些材料具有物化性能满足需要,即主要指标是:良好的红外透光性和宽的投影波段。一般来说,红外光学材料的透射率和透射与材料的内部结构,特别是化学键和能级结构密切相关。例如,对于晶体材料,短波吸收极限主要取决于带隙,而长波极限则取决于声子吸收,即晶格振动吸收,晶格振动的频率t与吸收长波极限有关,即振动频率t越低,长波极限越大,对于金刚石晶体材料来说,红外波段存在较强的一次晶格振动谐波和较弱的亚谐波吸收,因此金刚石结构晶体具有较好的透光率和较宽的频带特性。
对于晶体材料,在不考虑库和缺陷(孔隙率等)的情况下,大多数单晶材料的红外透明度与多晶体材料几乎相同。由于多晶材料的性能与单晶相同,内部不存在固溶体,其力学强度、抗热震性、经济性等方面都有很大的提高。由于是单晶,所以可以实现大尺寸等。在某些领域,它已经取代了单晶材料。
玻璃和塑料的投影带和透射率与原子和分子结构有关,但由于其结构的长期无序性,其短、长波吸收极限与带隙和声子吸收之间的关系较为模糊,玻璃与塑料的应用与研究是近年来的一个活跃领域。如今,红外材料已发展成为一个大家庭,其技术复杂多样,令人眼花缭乱。本文仅介绍了近年来几种重要红外材料的应用和发展。
晶体材料
晶体材料是人们最先使用的一种红外光学材料,也是目前使用的主要光学材料,晶体材料包括离子晶体和半导体晶体,离子晶体包括碱金属卤化物化合物晶体、碱土金属、卤化物化合物晶体、氧化物和一些无机盐晶体,半导体晶体包括氮元素晶体的o族、o族化合物和o族化合物晶体等。离子晶体通常具有较高的透过率和较低的折射率,因此反射损耗较小。一般不需要涂减反射膜。同时,与非离子晶体相比,离子晶体的光学性质受温度的影响较小,该晶体具有多种物理和化学性质,它可以满足不同应用的需要。有些晶体还具有光学技术、磁光效应、声光效应等。可作为探测器材料使用。